Acta Crystallographica Section B

Structural Science

ISSN 0108-7681

Detlef-M. Smilgies

Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA

Correspondence e-mail: dms79@cornell.edu

Phenylene lattices

A modified choice of unit-cell vectors resolves an apparent discrepancy in the indexation of the most intense *para*-sexiphenyl reflections compared with other known *para*-phenylenes.

Received 18 February 2005 Accepted 14 April 2005

The para-n-phenylenes with n = 2, 4, 5, 6, 7form a textbook example of a series of simple molecular structures. All molecules are linear and consist of n coplanar phenyl rings attached to each other by single bonds. Moreover, all molecules crystallize in the monoclinic space group P2₁/a (Rietveld et al., 1970; Delugeard et al., 1976; Baker et al., 1993). However, in diffraction studies, para-sexiphenyl (n = 6)seems to behave somewhat differently than the other phenylenes: some of most intense reflections have indices other than the intense reflections of the remaining members of the family. This is particularly evident in thin film studies (Yanagi & Okamoto, 1997; Yoshida et al., 1999; Kintzel et al., 2001; Smilgies et al., 2002; Plank et al., 2002; Kintzel, 2002), where only a few of the strongest reflections are observed.

The indexing problem can be resolved by looking into the determination of the unit cells. Based on the space group, lattice vectors \mathbf{a} and \mathbf{b} are fixed except for inversion. However, \mathbf{c} is merely chosen by convention that it should have a minimum length and that β should be larger than 90°. Hence, other choices of \mathbf{c} of the form $\mathbf{c} + m\mathbf{a}$, with m an integer, are still compatible with the space group. For the particular transformation $\mathbf{c}' = \mathbf{c} + \mathbf{a}$, keeping β larger than 90° and a right-handed basis implies $\mathbf{a}' = -\mathbf{a}$, $\mathbf{b}' = -\mathbf{b}$. The full basis transformation has the matrix S

$$\begin{pmatrix} \mathbf{a}' \\ \mathbf{b}' \\ \mathbf{c}' \end{pmatrix} = S \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}.$$

Table 1 lists all the known *para*-phenylene lattices for two choices of **c**. Choices from the literature and the results of the above calculation are marked as such. Table 2 lists the Miller indices of the strongest reflections, as they are affected by the basis change

$$\begin{pmatrix} h' & k' & l' \end{pmatrix} = \begin{pmatrix} h & k & l \end{pmatrix} \mathbf{S}^T,$$

and indeed the new indexation for *para*-sexiphenyl now matches the other phenylenes. From Table 1 it can be clearly seen that *para*-sexiphenyl agrees well with the other phenylenes, when using the new unit cell (Choice I in Table 1). c and c' as well as β and β' have almost degenerate values for *para*-sexiphenyl. Interestingly, the unit cell of *para*-septiphenyl in the literature (Baker *et al.*, 1993) is consistent with the cases n = 3, 4, 5, although \mathbf{c} does not have the shortest possible length. Nonetheless, this choice should be maintained for consistency with the other phenylene lattices.

As the transformed basis for *para*-sexiphenyl proposed here provides the lower Miller indices for the most intense reflections (see Table 2), it is suggested that the *para*-sexiphenyl unit cell (Choice II) reported by Baker *et al.* (1993) should be changed to Choice I so that it fits better with the remainder of the *p*-phenylene lattices. To this effect the atomic coordinates (x,y,z) from the literature (Baker *et al.*, 1993) need to be transformed as $(x' \ y' \ z') = (x \ y \ z)S^{-1}$.

Discussions with Edward J. Kintzel Jr, Andrei Andreev, Roland Resel and Hisao Yanagi on phenylene thin films are gratefully acknowledged. CHESS is a national user facility supported by NSF/NIH-NIGMS award DMR-0225180.

References

Baker, K. N., Fratini, A. V., Resch, T., Knachel, H. C., Adams, W. W., Socci, E. P. & Farmer, B. L. (1993). *Polymer*, 34, 1571–1587.

Delugeard, Y., Desuche, J. & Baudour, J. L. (1976).
Acta Cryst. B32, 702–705.

Kintzel, E. J. Jr (2002). PhD thesis. Florida State University, Tallahassee, Florida, USA.

Kintzel, E. J. Jr, Smilgies, D.-M., Skofronick, J. G., Safron, S. A., Van Winkle, D. H., Trelenberg, T. W., Akhadov, E. A. & Flaherty, F. A. (2001). J. Vac. Sci. Technol. A, 19, 1270–1276.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

short communications

Table 1 Lattice constants for the two choices of basis vectors.

n	Common a (Å)	Common b (Å)	Choice c (Å)	Ι β (°)	Ref.	Choice c' (Å)	II β' (°)	Ref.
3	8.106	5.613	13.613	92.02	(a)	15.597	119.28	(b)
4	8.110	5.610	17.910	95.80	(c)	18.899	109.47	(b)
5	8.070	5.581	22.056	97.91	(d)	22.419	102.98	(b)
6	8.091	5.568	26.338	99.53	(b)	26.241	98.17	(d)
7	8.034	5.547	30.577	100.52	(d)	30.163	94.66	(b)

References: (a) Rietveld et al. (1970); (b) this work; (c) Delugeard et al. (1976); (d) Baker et al. (1993).

Plank, H., Resel, R., Andreev, A., Sariciftci, N. S. & Sitter, H. (2002). J. Cryst. Growth, 237-239, 2076-2081.

Rietveld, H. M., Maslen, E. N. & Clews, C. J. B. (1970). Acta Cryst. B26, 693-706.

Smilgies, D.-M., Boudet, N. & Yanagi, H. (2002). Appl. Surf. Sci. 189, 24-30.

Yanagi, H. & Okamoto, S. (1997). Appl. Phys. Lett. 71, 2563-2565.

Table 2 Indices of equivalent reflections for the two choices of basis vectors.

Choice I	Choice II		
001	001		
110	11 <u>1</u>		
111	$11\overline{2}$		
210	$20\overline{3}$		
211	$21\overline{3}$		

Yoshida, Y., Takiguchi, H., Hanada, T.,